Search results for "Plasmonic-enhanced light trapping"

showing 4 items of 4 documents

Plasmonic nanostructures for light trapping in thin-film solar cells

2019

Abstract The optical properties of localized surface plasmon resonances (LSPR) sustained by self-assembled silver nanoparticles are of great interest for enhancing light trapping in thin film photovoltaics. First, we report on a systematic investigation of the structural and the optical properties of silver nanostructures fabricated by a solid-state dewetting process on various substrates. Our study allows to identify fabrication conditions in which circular, uniformly spaced nanoparticles are obtainable. The optimized NPs are then integrated into plasmonic back reflector (PBR) structures. Second, we demonstrate a novel procedure, involving a combination of opto-electronic spectroscopic tec…

Materials scienceCondensed Matter Physic02 engineering and technologySettore ING-INF/01 - Elettronica7. Clean energy01 natural sciencesSilver nanoparticlelaw.inventionNanoparticlelawPhotovoltaics0103 physical sciencesSolar cellMechanics of MaterialGeneral Materials Sciencesubwavelength nanostructuresDewettingThin filmSurface plasmon resonancePlasmonThin film solar cell010302 applied physicsthin film solar cellsbusiness.industryMechanical EngineeringSelf-assemblyself-assemblyLocalized surface plasmon resonance021001 nanoscience & nanotechnologyCondensed Matter PhysicsphotovoltaicsMechanics of MaterialsOptoelectronicsPlasmonic-enhanced light trappingSubwavelength nanostructurenanoparticlesMaterials Science (all)0210 nano-technologybusinessPhotovoltaicLocalized surface plasmon
researchProduct

Direct measurement of optical losses in plasmon-enhanced thin silicon films (Conference Presentation)

2018

Plasmon-enhanced absorption, often considered as a promising solution for efficient light trapping in thin film silicon solar cells, suffers from pronounced optical losses i.e. parasitic absorption, which do not contribute to the obtainable photocurrent. Direct measurements of such losses are therefore essential to optimize the design of plasmonic nanostructures and supporting layers. Importantly, contributions of useful and parasitic absorption cannot be measured separately with commonly used optical spectrophotometry. In this study we apply a novel strategy consisting in a combination of photocurrent and photothermal spectroscopic techniques to experimentally quantify the trade-off betwee…

PhotocurrentMaterials scienceSiliconbusiness.industryScatteringchemistry.chemical_elementPhotothermal therapySettore ING-INF/01 - ElettronicaSettore FIS/03 - Fisica Della MateriaSilver nanoparticlechemistryPlasmonic-enhanced light trapping Localized surface plasmon resonance Self-assemblyNanoparticles PhotovoltaicsOptoelectronicsThin filmbusinessAbsorption (electromagnetic radiation)PlasmonPlasmonics: Design, Materials, Fabrication, Characterization, and Applications XVI
researchProduct

Plasmonic nanostructures for light trapping in thin-film solar cells

2019

M.J.M. acknowledges funding from FCT through the grant SFRH/BPD/115566/2016. ALTALUZ (Reference PTDC/CTM-ENE/5125/2014). The optical properties of localized surface plasmon resonances (LSPR) sustained by self-assembled silver nanoparticles are of great interest for enhancing light trapping in thin film photovoltaics. First, we report on a systematic investigation of the structural and the optical properties of silver nanostructures fabricated by a solid-state dewetting process on various substrates. Our study allows to identify fabrication conditions in which circular, uniformly spaced nanoparticles are obtainable. The optimized NPs are then integrated into plasmonic back reflector (PBR) st…

PhotovoltaicsMaterials Science(all)Mechanics of MaterialsMechanical EngineeringNanoparticlesPlasmonic-enhanced light trappingSubwavelength nanostructuresSelf-assemblySDG 7 - Affordable and Clean EnergyLocalized surface plasmon resonanceThin film solar cellsCondensed Matter Physics
researchProduct

Plasmonic nanostructures for light trapping in photovoltaic

Metallic nanoparticles (NPs), sustaining localized surface plasmon resonances, are currently of great interest for enhancing light trapping in thin film solar cells. To be directly applicable in the photovoltaic industry, the NPs fabrication needs to be simple, reliable, low-cost and scalable. As such, self-assembly processes are most commonly used, and Ag is the preferred material, due to its high radiative efficiency and low imaginary permittivity⁠. After exploring the correlation between structural and optical properties of Ag NPs fabricated by solid- state dewetting process on various substrates, we identified the fabrication conditions in which desirable NPs are obtained, but we also e…

Plasmonic-enhanced light trapping Localized surface plasmon resonance Self-assembly nanoparticles PhotovoltaicsSettore ING-INF/01 - Elettronica
researchProduct